

SBOS374B − NOVEMBER 2006 − REVISED OCTOBER 2007

High-Side Measurement Current-Shunt Monitor with Comparator and Reference

FEATURES

- \bullet **COMPLETE CURRENT SENSE SOLUTION**
- \bullet **0.6V INTERNAL VOLTAGE REFERENCE**
- \bullet **INTERNAL OPEN-DRAIN COMPARATOR**
- \bullet **LATCHING CAPABILITY ON COMPARATOR**
- \bullet **COMMON-MODE RANGE: −16V to +80V**
- \bullet **HIGH ACCURACY: 3.5% MAX ERROR OVER TEMPERATURE**
- \bullet **BANDWIDTH: 500kHz (INA200)**
- \bullet **QUIESCENT CURRENT: 1800**µ**A (max)**
- \bullet **PACKAGES: SO-8, MSOP-8**

APPLICATIONS

- \bullet **NOTEBOOK COMPUTERS**
- \bullet **CELL PHONES**
- \bullet **TELECOM EQUIPMENT**
- \bullet **AUTOMOTIVE**
- \bullet **POWER MANAGEMENT**
- \bullet **BATTERY CHARGERS**
- \bullet **WELDING EQUIPMENT**

DESCRIPTION

The INA200, INA201, and INA202 are high-side current-shunt monitors with voltage output. The INA200−INA202 can sense drops across shunts at common-mode voltages from −16V to 80V. The INA200−INA202 are available with three output voltage scales: 20V/V, 50V/V, and 100V/V, with up to 500kHz bandwidth.

The INA200, INA201, and INA202 also incorporate an open-drain comparator and internal reference providing a 0.6V threshold. External dividers are used to set the current trip point. The comparator includes a latching capability, which can be made transparent by grounding (or leaving open) the RESET pin.

The INA200, INA201, and INA202 operate from a single +2.7V to +18V supply, drawing a maximum of 1800µA of supply current. Package options include the very small MSOP-8 and the SO-8. All versions are specified over the extended operating temperature range of −40°C to $+125^{\circ}$ C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments ÆÑ semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.

SBOS374B − NOVEMBER 2006 − REVISED OCTOBER 2007

ABSOLUTE MAXIMUM RATINGS(1)

- (1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not supported.
- (2) This voltage may exceed the ratings shown if the current at that pin is limited to 5mA.

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

www.ti.com

RUMENTS

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ORDERING INFORMATION(1)

(1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

PIN CONFIGURATIONS

ELECTRICAL CHARACTERISTICS: CURRENT-SHUNT MONITOR

Boldface limits apply over the specified temperature range: **T_A** = −40°**C** to +125°**C**.

At $T_A = +25^{\circ}C$, $V_S = +12V$, $V_{CM} = +12V$, $V_{SENSE} = 100$ mV, $R_L = 10k\Omega$ to GND, $R_{PULL-UP} = 5.1k\Omega$ connected from CMP_{OUT} to V_S , and CMP_{IN} = GND, unless otherwise noted.

(1) Offset is extrapolated from measurements of the output at 20mV and 100mV VSENSE. (2) Total output error includes effects of gain error and V_{OS}.

(3) Linearity is best fit to a straight line.

(4) For details on this region of operation, see the Accuracy Variations as a Result of V_{SENSE} and Common-Mode Voltage section in the Applications Information.

(5) See Typical Characteristic curve Output Swing vs Output Current.

(6) Specified by design.

SBOS374B − NOVEMBER 2006 − REVISED OCTOBER 2007

ELECTRICAL CHARACTERISTICS: COMPARATOR

Boldface limits apply over the specified temperature range: **T_A = −40[°]C to +125[°]C.**

At T_A = +25°C, V_S = +12V, V_{CM} = +12V, V_{SENSE} = 100mV, R_L = 10kΩ to GND, and R_{PULL-UP} = 5.1kΩ connected from CMP_{OUT} to V_S, unless otherwise noted.

(1) Hysteresis refers to the threshold (the threshold specification applies to a rising edge of a noninverting input) of a falling edge on the noninverting input of the comparator; refer to Figure 1.

(2) Specified by design.

(3) V_{ID} refers to the differential voltage at the comparator inputs.

(4) Open-drain output can be pulled to the range of $+2.7V$ to $+18V$, regardless of V_S .

(5) The comparator response time specified is the interval between the input step function and the instant when the output crosses 1.4V.

(6) The RESET input has an internal 2MΩ (typical) pull-down. Leaving RESET open results in a LOW state, with transparent comparator operation.

ELECTRICAL CHARACTERISTICS: GENERAL

Boldface limits apply over the specified temperature range: **T_A** = −40°**C** to +125°**C**.

At $T_A = +25^{\circ}$ C, V_S = +12V, V_{CM} = +12V, V_{SENSE} = 100mV, R_L = 10kΩ to GND, R_{PULL-UP} = 5.1kΩ connected from CMP_{OUT} to V_S, and CMP_{IN} = 1V, unless otherwise noted.

(1) The INA200, INA201, and INA202 are designed to power-up with the comparator in a defined reset state as long as RESET is open or grounded. The comparator is in reset as long as the power supply is below the voltage shown here. The comparator assumes a state based on the comparator input above this supply voltage. If RESET is high at power-up, the comparator output comes up high and requires a reset to assume a low state, if appropriate.

INA200 INA201 **INA202** SBOS374B − NOVEMBER 2006 − REVISED OCTOBER 2007

TYPICAL CHARACTERISTICS

At T_A = +25°C, V_S = +12V, V_{IN+} = 12V, and V_{SENSE} = 100mV, unless otherwise noted.

TYPICAL CHARACTERISTICS (continued)

At $T_A = +25^{\circ}C$, $V_S = +12V$, $V_{IN+} = 12V$, and $V_{SENSE} = 100$ mV, unless otherwise noted.

SBOS374B − NOVEMBER 2006 − REVISED OCTOBER 2007

TYPICAL CHARACTERISTICS (continued)

At T_A = +25°C, V_S = +12V, V_{IN+} = 12V, and V_{SENSE} = 100mV, unless otherwise noted.

 I_{SINK} (mA)

TYPICAL CHARACTERISTICS (continued)

At $T_A = +25^{\circ}C$, $V_S = +12V$, $V_{IN+} = 12V$, and $V_{SENSE} = 100$ mV, unless otherwise noted.

SBOS374B − NOVEMBER 2006 − REVISED OCTOBER 2007

APPLICATIONS INFORMATION

BASIC CONNECTIONS

Figure 2 shows the basic connections of the INA200, INA201, and INA202. The input pins, V_{IN+} and V_{IN−}, should be connected as closely as possible to the shunt resistor to minimize any resistance in series with the shunt resistance.

Power-supply bypass capacitors are required for stability. Applications with noisy or high-impedance power supplies may require additional decoupling capacitors to reject power-supply noise. Connect bypass capacitors close to the device pins.

POWER SUPPLY

The input circuitry of the INA200, INA201, and INA202 can accurately measure beyond the power-supply voltage, V+. For example, the V+ power supply can be 5V, whereas the load power-supply voltage is up to +80V. The output voltage range of the OUT terminal, however, is limited by the voltages on the power-supply pin.

ACCURACY VARIATIONS AS A RESULT OF VSENSE AND COMMON-MODE VOLTAGE

The accuracy of the INA200, INA201, and INA202 current shunt monitors is a function of two main variables: V_{SENSE} $(V_{IN+} - V_{IN-})$ and common-mode voltage, V_{CM} , relative to

the supply voltage, V_S . V_{CM} is expressed as $(V_{IN+} + V_{IN-})/2$; however, in practice, V_{CM} is seen as the voltage at V_{IN+} because the voltage drop across V_{SENSE} is usually small.

This section addresses the accuracy of these specific operating regions:

Normal Case 1: $V_{\text{SENSE}} \geq 20 \text{mV}$, $V_{\text{CM}} \geq V_{\text{S}}$ Normal Case 2: $V_{\text{SENSE}} \geq 20 \text{mV}$, $V_{\text{CM}} < V_{\text{S}}$ Low V_{SENSE} Case 1: V_{SENSE} < 20mV, $-16V \leq V_{\text{CM}}$ < 0 Low V_{SENSE} Case 2: V_{SENSE} < 20mV, $0V \leq V_{\text{CM}} \leq V_{\text{S}}$ Low V_{SENSE} Case 3: V_{SENSE} < 20mV, V_{S} < V_{CM} \leq 80V

Normal Case 1: V_{SENSE} **≥ 20mV,** V_{CM} **≥** V_{S}

This region of operation provides the highest accuracy. Here, the input offset voltage is characterized and measured using a two-step method. First, the gain is determined by Equation 1.

$$
G = \frac{V_{\text{OUT1}} - V_{\text{OUT2}}}{100 \text{mV} - 20 \text{mV}}
$$
(1)

where:

 $V_{OUT1} = Output Voltage with $V_{SENSE} = 100mV$$

 $V_{OUT2} = Output Voltage with V_{SENSE} = 20mV$

Then the offset voltage is measured at $V_{\text{SENSE}} = 100 \text{mV}$ and referred to the input (RTI) of the current shunt monitor, as shown in Equation 2.

$$
V_{OS}RTI (Referred - To - Input) = \left(\frac{V_{OUT1}}{G}\right) - 100mV
$$
 (2)

Figure 2. INA200 Basic Connections

In the Typical Characteristics, the Output Error vs Common-Mode Voltage curve shows the highest accuracy for the this region of operation. In this plot, $V_S = 12V$; for $V_{CM} \ge 12V$, the output error is at its minimum. This case is also used to create the $V_{\text{SENSE}} \geq 20 \text{mV}$ output specifications in the Electrical Characteristics table.

Normal Case 2: V_{SENSE} **≥ 20mV,** V_{CM} **<** V_{S}

This region of operation has slightly less accuracy than Normal Case 1 as a result of the common-mode operating area in which the part functions, as seen in the Output Error vs Common-Mode Voltage curve. As noted, for this graph $V_S = 12V$; for V_{CM} < 12V, the Output Error increases as V_{CM} becomes less than 12V, with a typical maximum error of 0.005% at the most negative $V_{CM} = -16V$.

Low V_{SENSE} Case 1: **VSENSE < 20mV, −16V** ≤ **VCM < 0; and** Low V_{SENSE} Case 3: **VSENSE < 20mV, VS < VCM** ≤ **80V**

Although the INA200 family of devices are not designed for accurate operation in either of these regions, some applications are exposed to these conditions. For example, when monitoring power supplies that are switched on and off while V_S is still applied to the INA200, INA201, or INA202, it is important to know what the behavior of the devices will be in these regions.

As V_{SENSE} approaches 0mV, in these V_{CM} regions, the device output accuracy degrades. A larger-than-normal offset can appear at the current shunt monitor output with a typical maximum value of V_{OUT} = 300mV for $V_{\text{SENSE}} = 0$ mV. As V_{SENSE} approaches 20mV, V_{OUT} returns to the expected output value with accuracy as specified in the Electrical Characteristics. Figure 3 illustrates this effect using the INA202 (Gain = 100).

Figure 3. Example for Low V_{SENSE} Cases 1 and 3 **(INA202, Gain = 100)**

Low V_{SENSE} Case 2: V_{SENSE} < 20mV, 0V \leq V_{CM} \leq V_{S}

This region of operation is the least accurate for the INA200 family. To achieve the wide input common-mode voltage range, these devices use two op amp front ends in SBOS374B − NOVEMBER 2006 − REVISED OCTOBER 2007

parallel. One op amp front end operates in the positive input common-mode voltage range, and the other in the negative input region. For this case, neither of these two internal amplifiers dominates and overall loop gain is very low. Within this region, V_{OUT} approaches voltages close to linear operation levels for Normal Case 2. This deviation from linear operation becomes greatest the closer V_{SENSE} approaches 0V. Within this region, as V_{SENSE} approaches 20mV, device operation is closer to that described by Normal Case 2. Figure 4 illustrates this behavior for the INA202. The V_{OUT} maximum peak for this case is tested by maintaining a constant V_s , setting $V_{\text{SENSE}} = 0$ mV and sweeping V_{CM} from 0V to V_S. The exact V_{CM} at which V_{OUT} peaks during this test varies from part to part, but the V_{OUT} maximum peak is tested to be less than the specified V_{OUT} tested limit.

Figure 4. Example for Low VSENSE Case 2 (INA202, Gain = 100)

SELECTING R_S

The value chosen for the shunt resistor, R_s , depends on the application and is a compromise between small-signal accuracy and maximum permissible voltage loss in the measurement line. High values of R_S provide better accuracy at lower currents by minimizing the effects of offset, while low values of R_S minimize voltage loss in the supply line. For most applications, best performance is attained with an R_S value that provides a full-scale shunt voltage range of 50mV to 100mV. Maximum input voltage for accurate measurements is 500mV.

TRANSIENT PROTECTION

The −16V to +80V common-mode range of the INA200, INA201, and INA202 is ideal for withstanding automotive fault conditions ranging from 12V battery reversal up to +80V transients, since no additional protective components are needed up to those levels. In the event that the INA200, INA201, and INA202 are exposed to transients on the inputs in excess of their ratings, then external transient absorption with semiconductor transient absorbers (such as zeners) will be necessary. Use of

TRUMENTS www.ti.com

MOVs or VDRs is not recommended except when they are used in addition to a semiconductor transient absorber. Select the transient absorber such that it will never allow the INA200, INA201, and INA202 to be exposed to transients greater than +80V (that is, allow for transient absorber tolerance, as well as additional voltage due to transient absorber dynamic impedance). Despite the use of internal zener-type ESD protection, the INA200, INA201, and INA202 do not lend themselves to using external resistors in series with the inputs since the internal gain resistors can vary up to ± 30 %. (If gain accuracy is not important, then resistors can be added in series with the INA200, INA201, and INA202 inputs with two equal resistors on each input.)

OUTPUT VOLTAGE RANGE

The output of the INA200, INA201, and INA202 is accurate within the output voltage swing range set by the power supply pin, V+. This performance is best illustrated when using the INA202 (a gain of 100 version), where a 100mV full-scale input from the shunt resistor requires an output voltage swing of +10V, and a power-supply voltage sufficient to achieve +10V on the output.

INPUT FILTERING

An obvious and straightforward location for filtering is at the output of the INA200, INA201, and INA202 series; however, this location negates the advantage of the low output impedance of the internal buffer. The only other option for filtering is at the input pins of the INA200,

INA201, and INA202, which is complicated by the internal $5k\Omega$ + 30% input impedance; this is shown in Figure 5. Using the lowest possible resistor values minimizes both the initial shift in gain and effects of tolerance. The effect on initial gain is given by Equation 3:

Gain Error % = 100 -
$$
\left(100 \times \frac{5k\Omega}{5k\Omega + R_{\text{FILT}}}\right)
$$
 (3)

Total effect on gain error can be calculated by replacing the 5kΩ term with 5kΩ – 30%, (or 3.5kΩ) or 5kΩ + 30% (or 6.5k Ω). The tolerance extremes of R_{FILT} can also be inserted into the equation. If a pair of 100. 1% resistors are used on the inputs, the initial gain error will be 1.96%. Worst-case tolerance conditions will always occur at the lower excursion of the internal 5kΩ resistor (3.5kΩ), and the higher excursion of R_{FILT} – 3% in this case.

Note that the specified accuracy of the INA200, INA201, and INA202 must then be combined in addition to these tolerances. While this discussion treated accuracy worst-case conditions by combining the extremes of the resistor values, it is appropriate to use geometric mean or root sum square calculations to total the effects of accuracy variations.

COMPARATOR

The INA200, INA201, and INA202 devices incorporate an open-drain comparator. This comparator typically has 2mV of offset and a 1.3µs (typical) response time. The output of the comparator latches and is reset through the RESET pin, see Figure 6.

Figure 5. Input Filter (Gain Error — 1.5% to −2.2%)

SBOS374B − NOVEMBER 2006 − REVISED OCTOBER 2007

Figure 6. Comparator Latching Capability

Figure 7. High-Side Switch Over-Current Shutdown

SBOS374B − NOVEMBER 2006 − REVISED OCTOBER 2007

Figure 8. Low-Side Switch Over-Current Shutdown

i ja **TEXAS INSTRUMENTS www.ti.com**

INA202 SBOS374B − NOVEMBER 2006 − REVISED OCTOBER 2007

INA200 INA 201

Figure 9. Bidirectional Over-Current Comparator

www.ti.com 21-Dec-2007

PACKAGING INFORMATION

JMENTS

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check <http://www.ti.com/productcontent> for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and

package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TEXAS TRUMENTS www.ti.com 11-Mar-2008

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

PACKAGE MATERIALS INFORMATION

*All dimensions are nominal

D (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

6 Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end.

 $\hat{\mathbb{D}}$ Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side.

E. Reference JEDEC MS-012 variation AA.

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

This drawing is subject to change without notice. **B.**

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.

- Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute ^a license from TI to use such products or services or ^a warranty or endorsement thereof. Use of such information may require ^a license from ^a third party under the patents or other intellectual property of the third party, or ^a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where ^a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated